skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sahin, Sena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 2, 2025
  2. To enhance the usability of password authentication, typo-tolerant password authentication schemes permit certain deviations in the user-supplied password, to account for common typographical errors yet still allow the user to successfully log in. In prior work, analysis by Chatterjee et al. demonstrated that typo-tolerance indeed notably improves password usability, yet (surprisingly) does not appear to significantly degrade authentication security. In practice, major web services such as Facebook have employed typo-tolerant password authentication systems. In this paper, we revisit the security impact of typo-tolerant password authentication. We observe that the existing security analysis of such systems considers only password spraying attacks. However, this threat model is incomplete, as password authentication systems must also contend with credential stuffing and tweaking attacks. Factoring in these missing attack vectors, we empirically re-evaluate the security impact of password typo-tolerance using password leak datasets, discovering a significantly larger degradation in security. To mitigate this issue, we explore machine learning classifiers that predict when a password's security is likely affected by typo-tolerance. Our resulting models offer various suitable operating points on the functionality-security tradeoff spectrum, ultimately allowing for partial deployment of typo-tolerant password authentication, preserving its functionality for many users while reducing the security risks. 
    more » « less